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Microorganisms in the Accreted
Ice of Lake Vostok, Antarctica

D. M. Karl,1 D. F. Bird,2 K. Björkman,1 T. Houlihan,1

R. Shackelford,1 L. Tupas1

Analysis of a portion of Vostok ice core number 5G, which is thought to contain
frozen water derived from Lake Vostok, Antarctica (a body of liquid water
located beneath about 4 kilometers of glacial ice), revealed between 2 3 102

and 3 3 102 bacterial cells per milliliter and low concentrations of potential
growth nutrients. Lipopolysaccharide (a Gram-negative bacterial cell biomar-
ker) was also detected at concentrations consistent with the cell enumeration
data, which suggests a predominance of Gram-negative bacteria. At least a
portion of the microbial assemblage was viable, as determined by the respi-
ration of carbon-14–labeled acetate and glucose substrates during incubations
at 3°C and 1 atmosphere. These accreted ice data suggest that Lake Vostok may
contain viable microorganisms.

The existence of subglacial lakes in East
Antarctica has been known for nearly three
decades, but only recently have their large
numbers and dimensions been revealed (1).
Lake Vostok, one of nearly 80 subglacial
lakes that have been discovered and mapped
by means of airborne 60-MHz radio-echo
sounding (2), is the largest (;14,000 km2

surface area and ;1800 km3 volume) and
deepest (up to 670 m) of these unusual sub-
glacial environments. The fresh water in
Lake Vostok is kept liquid by the pressure of
the ice overburden (equivalent to ;350 atm)
and, perhaps, by geothermal heating. This
lake and others like it may contain previously
undescribed relic populations of microorgan-
isms that are adapted for life in these presum-
ably oligotrophic (low-nutrient, low-biomass,
and low–energy flux) habitats.

In 1998, a team of Russian, U.S., and
French scientists completed the drilling of
Vostok hole number 5G (72°289S, 106°489E).

At a termination depth of 3623 m, this is the
deepest ice core ever obtained. The bottom of
the core is ;120 m from the ice–Lake Vostok
water interface. The upper 3300 m of Vostok
ice core 5G provides a continuous record of
Earth’s paleoclimate over the past 400,000
years, including four complete glacial-intergla-
cial periods (3). Ice samples extracted from core
depths of 1500 to 2750 m (with corresponding
ages ranging from 110,000 to 240,000 years)
have shown (i) the presence of a diverse assem-
blage of prokaryotic and eukaryotic microorgan-
isms (0.8 3 103 to 11 3 103 cells per milliliter
of ice melt), (ii) a positive correlation between
the presence of dust and the number of micro-
organisms, and (iii) the presence of viable me-
sophilic microorganisms as revealed by the con-
sumption of 14C-labeled organic substrates (4).

At greater depths in Vostok ice core 5G,
between 3311 and 3538 m, the layers are dis-
turbed by ice sheet dynamics; and beneath
3538 m, changes in the crystal structure, elec-
trical conductivity, and stable isotope and gas
composition of the ice suggest that the basal ice
at this location (3538 to 3743 m) is refrozen
Lake Vostok water (3, 5). Because this lake is
so remote and is largely inaccessible, the ac-
creted ice provides the most reliable surrogate

sample of the Lake Vostok ecosystem before
the actual penetration of the ice-lake boundary
and the collection of water samples.

A sample of the accreted Lake Vostok ice
was analyzed for (i) microbial cell enumeration
by epifluorescence microscopy, scanning elec-
tron microscopy (SEM), and dual laser flow
cytometry (Figs. 1 and 2); (ii) microbial biomass
estimation with two independent biomarker
compounds (Table 1): adenosine-59-triphos-
phate (ATP) and lipopolysaccharide (LPS); (iii)
microbial cell viability and potential metabolic
activity by analysis of rates of 14C-CO2 produc-
tion and 14C-incorporation into macromolecules
after timed incubations with exogenous 14C-
labeled organic substrates (Tables 1 and 2); and
(iv) the presence of potential carbon and nitro-
gen growth substrates (6–9). Our measurements
from ice collected at 3603 m complement the
independent ice core analyses of a sample from
3590 m (10). A major difference is that our core
contained no sediment inclusions. Therefore, the
results presented here may not be directly com-
parable to those of Priscu et al. (10), despite the
fact that both samples were obtained from the
accreted ice of Lake Vostok.

Epifluorescence microscopic examination of
decontaminated, melted ice samples revealed
numerous inorganic particles, many of which
fluoresced under ultraviolet (UV) illumination
(Fig. 1). The presence of these particles compli-
cates precise enumeration of putative microbial
cells; however, microbial cells (presumably bac-
teria) were readily and unequivocally detected
(Fig. 1, A and B). There was a spectrum of cell
sizes and morphologies, ranging from the abun-
dant small (0.1 to 0.4 mm) coccoid cells that
represented about half (43 6 6%) of the com-
munity to a diverse mixture of thin rods and
vibrios (0.5 to 3 mm) that made up the remain-
der (Fig. 1). Enumeration revealed a relatively
low abundance of 2 3 102 to 3 3 102 cells per
milliliter of melted ice, which extrapolates to
;3 ng of C per liter (Table 1). These biomass
estimates are at least an order of magnitude
lower than estimates of total prokaryotic cells
present in low-nutrient, deep ocean environ-
ments (Table 3).
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USA. 2Département des Sciences Biologiques, Univer-
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Dual laser–based flow cytometric analy-
ses of the ice melts confirmed the two main
conclusions of the direct microscopic obser-
vations: (i) the presence of a broad size spec-
trum of particles with variable blue fluores-
cence, including DNA-containing microor-
ganisms and (ii) the presence of fluorescent
(especially red) inorganic particles (Fig. 2, A
and B). Prokaryotic cell enumeration by the
Hoechst 33342 staining method yielded esti-
mates of 5 3 102 to 7 3 102 cells per
milliliter of melt, a value that is about two to
three times greater than the estimates based
on microscopic observations. We believe that
these higher estimates from the flow cytomet-
ric analyses are due to the inability of the
method to discriminate between stained cells
and stained nonliving particles of similar size
(Fig. 2). In any case, even these estimates
from flow cytometric analyses are low com-
pared to biomass estimates from other oligo-
trophic aquatic ecosystems (Table 3).

Total LPS concentration was used as an
independent estimate of the presence of bac-
terial cells. This cell wall biomarker is known
to correlate with Gram-negative bacterial cell
mass (11–13). From these LPS determina-
tions, we estimate the Gram-negative bacte-
rial biomass to be 0.5 to 1.6 ng of C per liter
of ice melt (Table 1). This is about an order of
magnitude lower than LPS concentrations re-
ported from deep ocean environments (Table
3) and is consistent with the relatively low
microbial biomass estimated from direct mi-
croscopy (Table 1). The lower LPS-extrapo-
lated biomass, relative to direct microscopy
and flow cytometry, might be expected if the
microbial assemblages were not exclusively
Gram-negative bacteria.

Attempts to measure ATP, an independent
biomarker for microbial biomass (13, 14), were
negative. This was in part due to the relatively
high detection limit ($0.5 pg of ATP ml21 of
melt, using a 50-ml sample) resulting from
limitations in total sample volume. If total mi-
crobial biomass was ;1 to 3 ng of C per liter,
as the direct count and LPS data suggest, then
ATP in these samples would have been ;0.01
pg ml21, or undetectable by our protocols.
Larger sample volumes, however, should pro-
vide an unequivocal quantification of viable
cells by ATP detection.

Incubation of the ice melts with 14C-labeled
acetate and glucose documented the production
of 14C-CO2, indicating the presence of meta-
bolically active cells (Table 2). Acetate was
respired 800 times more rapidly than was glu-
cose (Tables 1 and 2). These respiration rates
correspond to turnover times of approximately
2 and 2000 years, respectively, for the added
organic substrates. Compared to 14C-CO2 pro-
duction, rates of 14C incorporation into macro-
molecules (such as nucleic acid and protein)
were even lower (Table 2), if detectable at all.
For 14C-labeled acetate, the 14C incorporated

into macromolecules (the sum of that incorpo-
rated into nucleic acid and protein) was only 0.1
to 0.2% of the 14C respired; for 14C-glucose, the
relative incorporation was higher (10 to 40%),
even though the total metabolism was lower
(Table 1). Transfer of subsamples to 23°C after
an initial 11-day incubation at 3°C stimulated
14C-CO2 production and 14C-incorporation into
macromolecules (Table 2). It should be empha-

sized, however, that these rates of organic mat-
ter mineralization are potential rates; in situ
rates under ambient conditions (350 atm and
subzero temperatures) may be much lower.
Furthermore, the presence of liquid water
would be required for cellular metabolism.

Inorganic and organic nutrient supply is the
key to survival in all Earth habitats. The detec-
tion of relatively low total organic carbon (;7.5

Fig. 1. Microscopic anal-
yses of melt samples
from the accreted Vos-
tok ice. (A) Epifluores-
cence. SYBR Green I–
stained image of a small
coccoid-shaped bacteri-
um (right, bright yellow-
green cell) and associat-
ed red-fluorescing non-
living particulate mat-
ter. (B) Epifluorescence.
SYBR Green I–stained
image of a rod-shaped
bacterium. (C) Field
emission SEM image of
a coccoid bacterium on
a 0.02-mm Anopore fil-
ter viewed at a magni-
fication of 3150,000 in
the decontaminated ice
melt. (D) SEM image of
a rod-shaped bacteri-
um as in (B).

Fig. 2. Flow cytometric particulate
matter analysis of a Hoechst
33342–stained top melt sample
from the accreted Vostok ice. (A)
A plot of log red fluorescence (rel-
ative units) versus log blue fluo-
rescence (relative units) along
with reference beads of known
size and fluorescence intensity.
Green indicates the population of
particles with low blue (low DNA)
and variable size [see (B)]; they
were not counted as bacteria. (B)
A plot of log blue fluorescence,
same scale as in (A), versus log
right angle side scatter (relative
units) along with the same refer-
ence beads. We identified at least
two particle categories: “hetero-
trophic bacteria” and high blue–
high red–fluorescing particles. The
heterotrophic bacteria designation
is based on the known properties
of marine bacteria with cell di-
mensions similar to those of the
small coccoid-shaped bacteria in
the ice core melts (Fig. 1). On the
basis of these criteria, we estimate
the bacterial abundances in the
top melt and bottom melt sam-
ples to be 498 and 712 cells per
milliliter, respectively. These val-
ues conform to those determined
with direct microscopy and to cell carbon estimates derived from LPS concentrations (Tables 1 and 3).
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mM; Table 1) in the accreted ice, a value that is
about five times lower than in deep ocean hab-
itats (15), suggests that Lake Vostok is oligotro-
phic. In addition, we detected both oxidized and
reduced nitrogen in the melt samples (Table 1).
A reduction of nitrate plus nitrite in the accreted
ice relative to concentrations in meteoric ice
(16) might indicate net denitrification. The re-
dox state of the lake is unknown, and some

geochemical models predict that most free oxy-
gen might be sequestered in gas hydrates (17).

To survive in a liquid habitat for extended
periods of time, microorganisms must have an
exploitable energy source. If the energy for
contemporary microbial populations in Lake
Vostok is supplied from above, this lake may be
one of the most oligotrophic habitats on Earth.
Basal melting of the ice core and gravitational

transport would deliver deposited materials and
ice-rafted debris, including microorganisms and
potential growth substrates. If basin overflow
connects these subglacial habitats to the sea
(Lake Vostok is presently below sea level), this
transport pathway could represent another al-
lochthonous source of reduced carbon and en-
ergy. Alternatively, metabolic processes in the
lake may be fueled by geothermal energy, anal-
ogous to microbial life discovered at deep sea
hydrothermal vents (18). Lake Vostok may be
associated with an intracontinental rift zone
similar to that of East Africa, so this latter
process remains a possibility (19). Finally, the
subglacial lakes of East Antarctica may be
among the most isolated ecosystems on Earth
and could serve as terrestrial analogs to guide
the design of samplers and experiments to be
used in life probe missions to the ice-covered
ocean of the jovian moon Europa (20).

Table 1. Selected chemical, biochemical, and microbiological measurements of decontaminated melt-
water samples from the Vostok accreted ice at 3603 m.

Parameter* Top melt Bottom melt

NO3
2 1 NO2

2 (nmol liter21) 170 6 30 158 6 28
TN (nmol liter21) 972 6 211 2577 6 325
TOC (mmol liter21) 7.5 6 0.8 6.6 6 2.9
ATP (ng liter21) ,0.5 ,0.5
LPS (ng liter21) 0.095 6 0.024 0.083 6 0.021
Mean bacterial biomass (ng of C liter21)† 0.6–1.6 0.5–1.4
Epifluorescence microscopy (cells ml21) 291 6 44 278 6 43
Mean bacterial biomass (ng of C liter21)‡ 2.9 6 0.4 2.8 6 0.4
Respiration rate§

Acetate (nmol of C liter21 day21) 434 6 86 326 6 168
Glucose (nmol of C liter21 day21) 0.53 6 0.19 0.84 6 0.72

*Values presented are mean estimates 6SD (n 5 3 to 5). †Calculation assumes that all microorganisms are
Gram-negative bacteria (they all contain LPS) and have a C:LPS ratio ranging from 6.7 to 16.7 (8). ‡Includes all
prokaryotes that were not further separated by the methods used in the present study. Biomass extrapolation assumes
10 fg of carbon per prokaryotic cell. §Based on 14C-CO2 production measured with 14C-labeled acetate and glucose
during timed incubations at 3°C and 1 atm (8) (Table 2). Disintegrations per minute (DPM) per milliliter of sample per
day were converted to nmol of C liter21 day21, using uptake data and substrate-specific radioactivity and labeling
information (8). The calculation of C flux for acetate assumes that carboxyl carbon tracks methyl carbon in metabolism,
because only the methyl carbon was labeled with 14C.

Table 2. Respiration and net incorporation of 14C-labeled acetate and glucose by microorganisms in
decontaminated meltwater samples from the Vostok accreted ice at 3603 m. 14C activity is expressed as
DPM of the specific 14C-labeled organic substrate that was respired (CO2) or incorporated into cellular
biomolecules [nucleic acid (NA) and protein] per 2-ml sample of ice melt per incubation time, as
indicated. All samples were corrected for time zero 14C activities in the respective fractions: 190 (616)
DPM for 14CO2 in glucose and 11,611 (61556) DPM for 14CO2 in acetate. No significant (above
instrument background) amount of 14C was detected in either the NA or protein fractions, so time zero
procedural blanks were used for error propagation estimation: 25.9 (61.9; n 5 8) DPM of 14C for NA and
25.8 (63.8; n 5 8) DPM of 14C for protein. Values shown are mean net (experimental minus controls, or
blanks) determinations 61 SD (n 5 3) for the 2- and 11-day incubations; all others are single net
measurements. All incubations were conducted at 3°C in the dark, except as noted.*

Sample Substrate
Incubation

time
(days)

14C activity (DPM per sample)

CO2 NA Protein

Top melt 14C-acetate 2 2,962 (63,218) 20.6 (63.0) 2.2 (65.5)
11 24,388 (69,054) 40 (631) 0.9 (61.8)
18 36,560 6.9 27
18 (23°C)* 113,045 983 2,258

14C-glucose 2 22 (619) 2.1 (63.1) 22.1 (64.9)
11 77 (619) 9.2 (611.3) 22.8 (64.8)
18 104 19 36
18 (23°C) 17,893 599 764

Bottom melt 14C-acetate 2 2,708 (61,784) 0.2 (63.2) 1.1 (64.8)
11 24,311 (611,088) 59 (617) 1.3 (66.3)
18 13,258 43 3.8
18 (23°C) 166,341 1,528 4,007

14C-glucose 2 50 (645) 3.2 (62.7) 22.7 (65.5)
11 67 (621) 14 (62.1) 22.0 (65.1)
18 122 16 4.9
18 (23°C) 42,741 956 1,674

*The data for the 18-day sample at 23°C were obtained by removing single replicate subsamples at the 11-day time
point and incubating them for an additional 7 days at 23°C. A second replicate sample was kept at 3°C. The differences,
therefore, between the treatments of the 18-day sample at 3°C and the 18-day sample at 23°C represent temperature-
dependent changes in metabolism.

Table 3. Cross-ecosystem comparisons of micro-
bial biomass for a variety of natural aquatic hab-
itats. Habitat data are from a variety of sources
(22). DMC, direct microscopic count.

Habitat
Depth

(m)
Method

Estimated
microbial
biomass*
(mg of C
liter21)

South Atlantic, off 10 LPS 23
SW Africa DMC 14

500 ATP 1.8
LPS 1.6
DMC 1.1

1800 ATP 1.3
LPS 0.7
DMC 0.4

North Pacific, near 10 ATP 90–100
Aleutian Trench 1000 ATP 0.4

4000 ATP 0.06
7200 ATP 0.05

North Pacific gyre, 10 ATP 5–8
near Hawaii LPS 2–4

DMC 5
1000 ATP 0.05–0.20

LPS 0.04–0.06
4500 ATP 0.01–0.04

LPS 0.02–0.03

Galapagos Rift 2550 ATP 100–250
hydrothermal
vent

Subglacial Ross 237 ATP 0.01–0.13
Sea, Antarctica
(Station J-9)

DMC 0.09–0.12

Dry Valley Lakes,
Antarctica

Lake Fryxell 5–18 DMC 5–436
Lake Hoare 5–30 DMC 3–668
Lake Bonney 5–40 DMC 0.3–818

(East Lobe)

Vostak accreted 3603 ATP ,0.1
ice LPS 0.001

DMC 0.003

*Extrapolated using C:LPS 5 11.7 (weight/weight), C:ATP
5 250 (weight/weight), and 10 fg of C per bacterial cell.
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